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Abstract

Distributional semantic models have trou-
ble distinguishing strongly contrasting
words (such as antonyms) from highly
compatible ones (such as synonyms), be-
cause both kinds tend to occur in similar
contexts in corpora. We introduce the mul-
titask Lexical Contrast Model (mLCM),
an extension of the effective Skip-gram
method that optimizes semantic vectors
on the joint tasks of predicting corpus
contexts and making the representations
of WordNet synonyms closer than that
of matching WordNet antonyms. mLCM
outperforms Skip-gram both on general
semantic tasks and on synonym/antonym
discrimination, even when no direct lex-
ical contrast information about the test
words is provided during training. mLCM
also shows promising results on the task
of learning a compositional negation oper-
ator mapping adjectives to their antonyms.

1 Introduction

Distributional semantic models (DSMs) extract
vectors representing word meaning by relying on
the distributional hypothesis, that is, the idea that
words that are related in meaning will tend to oc-
cur in similar contexts (Turney and Pantel, 2010).
While extensive work has shown that contextual
similarity is an excellent proxy to semantic simi-
larity, a big problem for DSMs is that both words
with very compatible meanings (e.g., near syn-
onyms) and words with strongly contrasting mean-
ings (e.g., antonyms) tend to occur in the same
contexts. Indeed, Mohammad et al. (2013) have
shown that synonyms and antonyms are indistin-
guishable in terms of their average degree of dis-
tributional similarity.

This is problematic for the application of DSMs
to reasoning tasks such as entailment detection

(black is very close to both dark and white in dis-
tributional semantic space, but it implies the for-
mer while contradicting the latter). Beyond word-
level relations, the same difficulties make it chal-
lenging for compositional extensions of DSMs
to capture the fundamental phenomenon of nega-
tion at the phrasal and sentential levels (the dis-
tributional vectors for good and not good are
nearly identical) (Hermann et al., 2013; Preller
and Sadrzadeh, 2011).

Mohammad and colleagues concluded that
DSMs alone cannot detect semantic contrast, and
proposed an approach that couples them with other
resources. Pure-DSM solutions include isolating
contexts that are expected to be more discrimina-
tive of contrast, tuning the similarity measure to
make it more sensitive to contrast or training a su-
pervised contrast classifier on DSM vectors (Adel
and Schütze, 2014; Santus et al., 2014; Schulte im
Walde and Köper, 2013; Turney, 2008). We pro-
pose instead to induce word vectors using a mul-
titask cost function combining a traditional DSM
context-prediction objective with a term forcing
words to be closer to their WordNet synonyms
than to their antonyms. In this way, we make the
model aware that contrasting words such as hot
and cold, while still semantically related, should
not be nearest neighbours in the space.

In a similar spirit, Yih et al. (2012) devise a
DSM in which the embeddings of the antonyms
of a word are pushed to be the vectors that are
farthest away from its representation. While their
model is able to correctly pick the antonym of a
target item from a list of candidates (since it is
the most dissimilar element in the list), we con-
jecture that their radical strategy produces embed-
dings with poor performance on general semantic
tasks.1 Our method has instead a beneficial global

1Indeed, by simulating their strategy, we were able to in-
ject lexical contrast into word embeddings, but performance
on a general semantic relatedness task decreased dramati-



effect on semantic vectors, leading to state-of-the-
art results in a challenging similarity task, and en-
abling better learning of a compositional negation
function.

Our work is also closely related to Faruqui et al.
(2015), who propose an algorithm to adapt pre-
trained DSM representations using semantic re-
sources such as WordNet. This post-processing
approach, while extremely effective, has the dis-
advantage that changes only affect words that are
present in the resource, without propagating to
the whole lexicon. Other recent work has instead
adopted multitask objectives similar to ours in or-
der to directly plug in knowledge from structured
resources at DSM induction time (Fried and Duh,
2015; Xu et al., 2014; Yu and Dredze, 2014). Our
main novelties with respect to these proposals are
the focus on capturing semantic contrast, and ex-
plicitly testing the hypothesis that the multitask
objective is also beneficial to words that are not di-
rectly exposed to WordNet evidence during train-
ing.2

2 The multitask Lexical Contrast Model

Skip-gram model The multitask Lexical Con-
trast Model (mLCM) extends the Skip-gram
model (Mikolov et al., 2013). Given an input
text corpus, Skip-gram optimizes word vectors
on the task of approximating, for each word, the
probability of other words to occur in its context.
More specifically, its objective function is:

1

T

T∑
t=1

 ∑
−c≤j≤c,j 6=0

log p(wt+j |wt)

 (1)

where w1, w2, ..., wT is the training corpus,
consisting of a list of target words wt, for which
we want to learn the vector representations (and
serving as contexts of each other), and c is the
window size determining the span of context
words to be considered. p(wt+j |wt), the proba-
bility of a context word given the target word is
computed using softmax:

p(wt+j |wt) =
e
v′wt+j

T vwt∑W
w′=1 e

v′
w′

T vwt

(2)

cally, with a 25% drop in terms of Spearman correlation.
2After submitting this work, we became aware of Ono et

al. (2015), that implement very similar ideas. However, one
major difference between their work and ours is that their
strategy is in the same direction of (Yih et al., 2012), which
might result in poor performance on general semantic tasks.

where vw and v′w are respectively the target and
context vector representations of word w, and W
is the number of words in the vocabulary. To avoid
the O(|W |) time complexity of the normalization
term in Equation (2), Mikolov et al. (2013) use
either hierarchical softmax or negative sampling.
Here, we adopt the negative sampling method.

Injecting lexical contrast information We
account for lexical contrast by implementing a
2-task strategy, combining the Skip-gram context
prediction objective with a new term:

1

T

T∑
t=1

(Jskipgram(wt) + Jlc(wt)) (3)

The lexical contrast objective Jlc(wt) tries to en-
force the constraint that contrasting pairs should
have lower similarity than compatible ones within
a max-margin framework. Our formulation is in-
spired by Lazaridou et al. (2015), who use a sim-
ilar multitask strategy to induce multimodal em-
beddings. Given a target word w, with sets of
antonyms A(w) and synonyms S(w), the max-
margin objective for lexical contrast is:

−
∑

s∈S(w),a∈A(w)

max(0,∆− cos(vw, vs)

+ cos(vw, va)) (4)

where ∆ is the margin and cos(x, y) stands for
cosine similarity between vectors x and y. Note
that, by equation (3), the Jlc(wt) term is evalu-
ated each time a word is encountered in the corpus.
We extract antonym and synonym sets from Word-
Net (Miller, 1995). If a word wt is not associated
to synonym/antonym information in WordNet, we
set Jlc(wt) = 0.

3 Experimental setup

We compare the performance of mLCM against
Skip-gram. Both models’ parameters are esti-
mated by backpropagation of error via stochastic
gradient descent. Our text corpus is a Wikipedia3

2009 dump comprising approximately 800M to-
kens and 200K distinct word types.4 Other hyper-
parameters, selected without tuning, include: vec-
tor size (300), window size (5), negative sam-
ples (10), sub-sampling to disfavor frequent words
(10−3). For mLCM, we use 7500 antonym pairs

3https://en.wikipedia.org
4We only consider words that occur more than 50 times in

the corpus



MEN SimLex
Skip-gram 0.73 0.39
mLCM 0.74 0.52

Table 1: Relatedness/similarity tasks

and 15000 synonym pairs; on average, 2.5 pairs
per word and 9000 words are covered.

Both models are evaluated in four tasks:
two lexical tasks testing the general quality of
the learned embeddings and one focusing on
antonymy, and a negation task which verifies the
positive influence of lexical contrast in a composi-
tional setting.

4 Lexical tasks

4.1 Relatedness and similarity
In classic semantic relatedness/similarity tasks,
the models provide cosine scores between pairs of
word vectors that are then compared to human rat-
ings for the same pairs. Performance is evaluated
by Spearman correlation between system and hu-
man scores. For general relatedness, we use the
MEN dataset of Bruni et al. (2014), which con-
sists of 3,000 word pairs comprising 656 nouns,
57 adjectives and 38 verbs. The SimLex dataset
from Hill et al. (2014b), comprising 999 word
pairs (666 noun, 222 verb and 111 adjective pairs)
was explicitly built to test a tighter notion of strict
“semantic” similarity.

Table 1 reports model performance. On MEN,
mLCM outperforms Skip-gram by a small margin,
which shows that the new information, at the very
least, does not have any negative effect on gen-
eral semantic relatedness. On the other hand, lex-
ical contrast information has a strong positive ef-
fect on measuring strict semantic similarity, lead-
ing mLCM to achieve state-of-the-art SimLex per-
formance (Hill et al., 2014a).

4.2 Distinguishing antonyms and synonyms
Having shown that capturing lexical contrast in-
formation results in higher-quality representations
for general purposes, we focus next on the spe-
cific task of distinguishing contrasting words from
highly compatible ones. We use the adjective part
of dataset of Santus et al. (2014), that contains 262
antonym and 364 synonym pairs. We compute co-
sine similarity of all pairs and use the area under
the ROC curve (AUC) to measure model perfor-
mance. Moreover, we directly test mLCM’s abil-

AUC
Skip-gram 0.62
mLCM 0.78
mLCM-propagate 0.66

Table 2: Synonym vs antonym task

ity to propagate lexical contrast across the vocab-
ulary by retraining it without using WordNet in-
formation for any of the words in the dataset, i.e.
the words in the dataset are removed from the syn-
onym or antonym sets of all the adjectives used in
training (mLCM-propagate in the results table).

The results, in Table 2, show that mLCM can
successfully learn to distinguish contrasting words
from synonyms. The performance of the mLCM
model trained without explicit contrast informa-
tion about the dataset words proves moreover that
lexical contrast information is indeed propagated
through the lexical network.

4.3 Vector space structure

To further investigate the effect of lexical con-
trast information, we perform a qualitative anal-
ysis of how it affects the space structure. We pick
20 scalar adjectives denoting spatial or weight-
related aspects of objects and living beings, where
10 indicate the presence of the relevant property
to a great degree (big, long, heavy. . . ), whereas
the remaining 10 suggest that the property is
present in little amounts (little, short, light. . . ).
We project the 300-dimensional vectors of these
adjectives onto a 2-dimensional plane using the
t-SNE toolkit,5 which attempts to preserve the
structure of the original high-dimensional word
neighborhoods. Figure 1 shows that, in Skip-
gram space, pairs at the extreme of the same scale
(light vs heavy, narrow vs wide, fat vs skinny) are
very close to each other compared to other words;
whereas for mLCM the extremes are farther apart
from each other, as expected. Moreover, the ad-
jectives at the two ends of the scales are grouped
together. This is a very nice property, since many
adjectives in one group will tend to characterize
the same objects. Within the two clusters, words
that are more similar (e.g., wide and broad) are
still closer to each other, just as we would expect
them to be.

5http://lvdmaaten.github.io/tsne/
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Figure 1: Arrangement of some scalar adjectives in Skip-gram vs mLCM spaces

5 Learning Negation

Having shown that injecting lexical contrast in-
formation into word embeddings is beneficial for
lexical tasks, we further explore if it can also
help composition. Since mLCM makes contrast-
ing and compatible words more distinguishable
from each other, we conjecture that it would be
easier for compositional DSMs to capture negation
in mLCM space. We perform a proof-of-concept
experiment where we represent not as a function
that is trained to map an adjective to its antonym
(good to bad). That is, by adopting the frame-
work of Baroni et al. (2014), we take not to be
a matrix that, when multiplied with an adjective-
representing vector, returns the vector of an adjec-
tive with the opposite meaning. We realize that
this is capturing only a tiny fraction of the linguis-
tic uses of negation, but it is at least a concrete
starting point.

First, we select a list of adjectives and antonyms
from WordNet; for each adjective, we only pick
the antonym of its first sense. This yields a to-
tal of around 4,000 antonym pairs. Then, we in-
duce the not matrix with least-squares regression
on training pairs. Finally, we assess the learned
negation function by applying it to an adjective
and computing accuracy in the task of retrieving
the correct antonym as nearest neighbour of the
not-composed vector, searching across all Word-
Net adjectives (10K items). The results in Table 3
are obtained by using 10-fold cross-validation on
the 4,000 pairs. We see that mLCM outperforms
Skip-gram by a large margin.

Figure 2 shows heatmaps of the weight matrices
learnt for not by the two models. Intriguingly, for
mLCM, the not matrix has negative values on the
diagonal, that is, it will tend to flip the values in

train test
Skip-gram 0.44 0.02
mLCM 0.87 0.27

Table 3: Average accuracy in retrieving antonym
as nearest neighbour when applying the not com-
position function to 4,000 adjectives.
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Figure 2: Heatmaps of not-composition matrices.

the input vector, not unlike what arithmetic nega-
tion would do. On the other hand, the Skip-gram-
based not matrix is remarkably identity-like, with
large positive values concentrated on the diagonal.
Thus, under this approach, an adjective will be al-
most identical to its antonym, which explains why
it fails completely on the test set data: the nearest
neighbour of not-X will typically be X itself.

6 Conclusion

Given the promise shown by mLCM in the ex-
periments reported here, we plan to test it next
on a range of linguistically interesting phenomena
that are challenging for DSMs and where lexical
contrast information might help. These include
modeling a broader range of negation types (de
Swart, 2010), capturing lexical and phrasal infer-
ence (Levy et al., 2015), deriving adjectival scales
(Kim and de Marneffe, 2013) and distinguishing
semantic similarity from referential compatibility



(Kruszewski and Baroni, 2015).
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